first commit
This commit is contained in:
50
README.md
Normal file
50
README.md
Normal file
@@ -0,0 +1,50 @@
|
||||
# Trading Data Daemon
|
||||
|
||||
Ein modularer Daemon zum Herunterladen und Speichern von Handelsdaten von verschiedenen Börsen in einer Time-Series-Datenbank.
|
||||
|
||||
## Unterstützte Exchanges
|
||||
- **European Investor Exchange (EIX)**: Lädt tägliche Kursblatt-CSVs herunter.
|
||||
- **Lang & Schwarz (LS)**: Fragt die heutigen Trades über deren JSON/CSV-RPC ab.
|
||||
|
||||
## Architektur
|
||||
- `src/exchanges/base.py`: Basisklasse für neue Börsen (einfach erweiterbar).
|
||||
- `src/database/questdb_client.py`: Speichert Daten in QuestDB via Influx Line Protocol (ILP).
|
||||
- `daemon.py`: Der Orchestrator, der die Daten abruft und speichert.
|
||||
|
||||
## Installation und Setup
|
||||
|
||||
### 1. QuestDB (Timeseries DB) starten
|
||||
Am einfachsten via Docker Compose:
|
||||
```bash
|
||||
docker-compose up -d
|
||||
```
|
||||
QuestDB ist dann unter `http://localhost:9000` erreichbar.
|
||||
|
||||
### 2. Python Abhängigkeiten installieren
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### 3. Systemd Service einrichten
|
||||
Kopiere die Dateien nach `/etc/systemd/system/`:
|
||||
|
||||
```bash
|
||||
sudo cp systemd/trading-daemon.service /etc/systemd/system/
|
||||
sudo cp systemd/trading-daemon.timer /etc/systemd/system/
|
||||
```
|
||||
|
||||
Pfade in `trading-daemon.service` müssen ggf. angepasst werden (aktuell auf `/Users/melchiorreimers/...` gesetzt).
|
||||
|
||||
Dienste aktivieren:
|
||||
```bash
|
||||
sudo systemctl daemon-reload
|
||||
sudo systemctl enable --now trading-daemon.timer
|
||||
```
|
||||
|
||||
### 4. Manuell testen
|
||||
```bash
|
||||
python3 daemon.py
|
||||
```
|
||||
|
||||
## Erweiterung
|
||||
Um eine neue Börse hinzuzufügen, erstelle einfach eine neue Klasse in `src/exchanges/`, die von `BaseExchange` erbt und implementiere `fetch_latest_trades()`. Füge sie dann in `daemon.py` zur Liste hinzu.
|
||||
39
daemon.py
Normal file
39
daemon.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import time
|
||||
import logging
|
||||
from src.exchanges.eix import EIXExchange
|
||||
from src.exchanges.ls import LSExchange
|
||||
from src.database.questdb_client import DatabaseClient
|
||||
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger("TradingDaemon")
|
||||
|
||||
def main():
|
||||
logger.info("Starting Trading Data Fetcher")
|
||||
|
||||
# Initialize components
|
||||
exchanges = [
|
||||
EIXExchange(),
|
||||
LSExchange()
|
||||
]
|
||||
db = DatabaseClient()
|
||||
|
||||
# Process each exchange
|
||||
for exchange in exchanges:
|
||||
try:
|
||||
logger.info(f"Fetching data from {exchange.name}...")
|
||||
trades = exchange.fetch_latest_trades()
|
||||
logger.info(f"Fetched {len(trades)} trades from {exchange.name}.")
|
||||
|
||||
if trades:
|
||||
db.save_trades(trades)
|
||||
logger.info(f"Stored {len(trades)} trades in database.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing exchange {exchange.name}: {e}")
|
||||
|
||||
logger.info("Fetching cycle complete.")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
15
docker-compose.yml
Normal file
15
docker-compose.yml
Normal file
@@ -0,0 +1,15 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
questdb:
|
||||
image: questdb/questdb:latest
|
||||
container_name: questdb
|
||||
ports:
|
||||
- "9000:9000"
|
||||
- "8812:8812"
|
||||
- "9009:9009"
|
||||
volumes:
|
||||
- questdb_data:/root/.questdb
|
||||
|
||||
volumes:
|
||||
questdb_data:
|
||||
2
requirements.txt
Normal file
2
requirements.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
requests
|
||||
beautifulsoup4
|
||||
46
src/database/questdb_client.py
Normal file
46
src/database/questdb_client.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import requests
|
||||
import time
|
||||
from typing import List
|
||||
from ..exchanges.base import Trade
|
||||
|
||||
class DatabaseClient:
|
||||
def __init__(self, host: str = "localhost", port: int = 9000):
|
||||
self.host = host
|
||||
self.port = port
|
||||
self.url = f"http://{host}:{port}/write"
|
||||
|
||||
def save_trades(self, trades: List[Trade]):
|
||||
if not trades:
|
||||
return
|
||||
|
||||
lines = []
|
||||
for trade in trades:
|
||||
# QuestDB Influx Line Protocol format:
|
||||
# table_name,tag1=val1,tag2=val2 field1=val1,field2=val2 timestamp
|
||||
# We use microseconds for timestamp (nanoseconds is standard for ILP)
|
||||
|
||||
# Clean symbols for ILP
|
||||
symbol = trade.symbol.replace(" ", "\\ ").replace(",", "\\,")
|
||||
exchange = trade.exchange
|
||||
|
||||
line = f"trades,exchange={exchange},symbol={symbol},isin={trade.isin} " \
|
||||
f"price={trade.price},quantity={trade.quantity} " \
|
||||
f"{int(trade.timestamp.timestamp() * 1e9)}"
|
||||
lines.append(line)
|
||||
|
||||
payload = "\n".join(lines) + "\n"
|
||||
|
||||
try:
|
||||
response = requests.post(self.url, data=payload, params={'precision': 'ns'})
|
||||
if response.status_code != 204:
|
||||
print(f"Error saving to QuestDB: {response.text}")
|
||||
except Exception as e:
|
||||
print(f"Could not connect to QuestDB at {self.url}: {e}")
|
||||
# Fallback: print to console or save to file
|
||||
self._fallback_save(trades)
|
||||
|
||||
def _fallback_save(self, trades: List[Trade]):
|
||||
# Just log to a file for now if QuestDB is not available
|
||||
with open("trades_fallback.log", "a") as f:
|
||||
for t in trades:
|
||||
f.write(f"{t.timestamp} | {t.exchange} | {t.symbol} | {t.price} | {t.quantity}\n")
|
||||
25
src/exchanges/base.py
Normal file
25
src/exchanges/base.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import abc
|
||||
from datetime import datetime
|
||||
from typing import List, Dict, Any
|
||||
|
||||
class Trade:
|
||||
def __init__(self, exchange: str, symbol: str, price: float, quantity: float, timestamp: datetime, isin: str = None):
|
||||
self.exchange = exchange
|
||||
self.symbol = symbol
|
||||
self.isin = isin
|
||||
self.price = price
|
||||
self.quantity = quantity
|
||||
self.timestamp = timestamp
|
||||
|
||||
def __repr__(self):
|
||||
return f"Trade({self.exchange}, {self.symbol}, {self.price}, {self.quantity}, {self.timestamp})"
|
||||
|
||||
class BaseExchange(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def fetch_latest_trades(self) -> List[Trade]:
|
||||
pass
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def name(self) -> str:
|
||||
pass
|
||||
75
src/exchanges/eix.py
Normal file
75
src/exchanges/eix.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import requests
|
||||
import json
|
||||
from bs4 import BeautifulSoup
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from .base import BaseExchange, Trade
|
||||
import csv
|
||||
import io
|
||||
|
||||
class EIXExchange(BaseExchange):
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "EIX"
|
||||
|
||||
def fetch_latest_trades(self) -> List[Trade]:
|
||||
url = "https://european-investor-exchange.com/en/trade-list"
|
||||
response = requests.get(url)
|
||||
response.raise_for_status()
|
||||
|
||||
soup = BeautifulSoup(response.text, 'html.parser')
|
||||
next_data_script = soup.find('script', id='__NEXT_DATA__')
|
||||
if not next_data_script:
|
||||
return []
|
||||
|
||||
data = json.loads(next_data_script.string)
|
||||
# The structure according to subagent: data['props']['pageProps']['rowsData']
|
||||
rows_data = data.get('props', {}).get('pageProps', {}).get('rowsData', [])
|
||||
|
||||
trades = []
|
||||
for row in rows_data:
|
||||
# We only want the most recent ones. For simplicity, let's pick the first one which is likely the latest.
|
||||
# In a real daemon, we might want to track which ones we already processed.
|
||||
file_key = row.get('key')
|
||||
if not file_key:
|
||||
continue
|
||||
|
||||
# Download the CSV
|
||||
csv_url = f"https://european-investor-exchange.com/api/trade-file-contents?key={file_key}"
|
||||
csv_response = requests.get(csv_url)
|
||||
if csv_response.status_code == 200:
|
||||
trades.extend(self._parse_csv(csv_response.text))
|
||||
# Break after one file for demonstration or handle multiple
|
||||
break
|
||||
|
||||
return trades
|
||||
|
||||
def _parse_csv(self, csv_text: str) -> List[Trade]:
|
||||
trades = []
|
||||
f = io.StringIO(csv_text)
|
||||
# Header: Trading day & Trading time UTC,Instrument Identifier,Quantity,Unit Price,Price Currency,Venue Identifier,Side
|
||||
reader = csv.DictReader(f, delimiter=',')
|
||||
for row in reader:
|
||||
try:
|
||||
price = float(row['Unit Price'])
|
||||
quantity = float(row['Quantity'])
|
||||
isin = row['Instrument Identifier']
|
||||
symbol = isin # Often symbol is unknown, use ISIN
|
||||
time_str = row['Trading day & Trading time UTC']
|
||||
|
||||
# Format: 2026-01-22T06:30:00.617Z
|
||||
# Python 3.11+ supports ISO with Z, otherwise we strip Z
|
||||
ts_str = time_str.replace('Z', '+00:00')
|
||||
timestamp = datetime.fromisoformat(ts_str)
|
||||
|
||||
trades.append(Trade(
|
||||
exchange=self.name,
|
||||
symbol=symbol,
|
||||
isin=isin,
|
||||
price=price,
|
||||
quantity=quantity,
|
||||
timestamp=timestamp
|
||||
))
|
||||
except Exception:
|
||||
continue
|
||||
return trades
|
||||
58
src/exchanges/ls.py
Normal file
58
src/exchanges/ls.py
Normal file
@@ -0,0 +1,58 @@
|
||||
import requests
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from .base import BaseExchange, Trade
|
||||
|
||||
class LSExchange(BaseExchange):
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "LS"
|
||||
|
||||
def fetch_latest_trades(self) -> List[Trade]:
|
||||
# Today's trades endpoint
|
||||
url = "https://www.ls-x.de/_rpc/json/.lstc/instrument/list/lstctradestoday"
|
||||
|
||||
# We might need headers to mimic a browser or handle disclaimer
|
||||
headers = {
|
||||
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
||||
'Accept': 'application/json',
|
||||
'Referer': 'https://www.ls-tc.de/'
|
||||
}
|
||||
|
||||
try:
|
||||
response = requests.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
|
||||
import csv
|
||||
import io
|
||||
f = io.StringIO(response.text)
|
||||
# Header: isin;displayName;tradeTime;price;currency;size;orderId
|
||||
reader = csv.DictReader(f, delimiter=';')
|
||||
|
||||
trades = []
|
||||
for item in reader:
|
||||
try:
|
||||
price = float(item['price'].replace(',', '.'))
|
||||
quantity = float(item['size'].replace(',', '.'))
|
||||
isin = item['isin']
|
||||
symbol = item['displayName']
|
||||
time_str = item['tradeTime']
|
||||
|
||||
# Format: 2026-01-23T07:30:00.992000Z
|
||||
ts_str = time_str.replace('Z', '+00:00')
|
||||
timestamp = datetime.fromisoformat(ts_str)
|
||||
|
||||
trades.append(Trade(
|
||||
exchange=self.name,
|
||||
symbol=symbol,
|
||||
isin=isin,
|
||||
price=price,
|
||||
quantity=quantity,
|
||||
timestamp=timestamp
|
||||
))
|
||||
except Exception:
|
||||
continue
|
||||
return trades
|
||||
except Exception as e:
|
||||
print(f"Error fetching LS data: {e}")
|
||||
return []
|
||||
14
systemd/trading-daemon.service
Normal file
14
systemd/trading-daemon.service
Normal file
@@ -0,0 +1,14 @@
|
||||
[Unit]
|
||||
Description=Trading Data Fetcher Service
|
||||
After=network.target
|
||||
|
||||
[Service]
|
||||
Type=oneshot
|
||||
User=melchiorreimers
|
||||
WorkingDirectory=/Users/melchiorreimers/.gemini/antigravity/scratch/trading_daemon
|
||||
ExecStart=/usr/bin/python3 /Users/melchiorreimers/.gemini/antigravity/scratch/trading_daemon/daemon.py
|
||||
StandardOutput=journal
|
||||
StandardError=journal
|
||||
|
||||
[Install]
|
||||
WantedBy=multi-user.target
|
||||
9
systemd/trading-daemon.timer
Normal file
9
systemd/trading-daemon.timer
Normal file
@@ -0,0 +1,9 @@
|
||||
[Unit]
|
||||
Description=Timer for Trading Data Fetcher
|
||||
|
||||
[Timer]
|
||||
OnCalendar=*-*-* *:00:00
|
||||
Persistent=true
|
||||
|
||||
[Install]
|
||||
WantedBy=timers.target
|
||||
Reference in New Issue
Block a user